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Abstract-Fibers that are produced by air-gap wet-spinning are composed of cellulose, solvent and water. 
In the air-gap, the water evaporates at the fiber surface and this contributes to the cooling of the fiber. 
Here we determine the fiber temperature in the air-gap by taking into account heat conduction and 
convection as well as heat transfer due to evaporation. The computed temperature profiles are compared 
to experimental data. It is found that, close to the spinneret, water evaporates, enhancing the cooling of 
the fiber. At larger distances, water-vapour condenses at the fiber surface, lowering the cooling rate. The 
ultimate fiber temperature exceeds the temperature of the surrounding air and is determined by the balance 

between heat removal by convection and heat supply by condensation. 

1. INTRODUCTION 

AIR-GAP wet-spinning is a major commercial tech- 
nique to produce synthetic fibers. In this process the 
spinning solution is extruded through a spinneret hole 
as a hot melt. The fiber is first drawn through an air- 
gap, where it is stretched and cooled, then it traverses 
the coagulation bath. Finally, the fiber is collected on 
a wind-up roll for further treatment. The process is 
shown schematically in Fig. 1. 

properties, i.e. its viscosity. Because the melt viscosity 
strongly depends on temperature, a detailed knowl- 
edge of the fiber temperature is indispensable in order 
to correctly predict the velocity of the fiber. 
Conversely, the fiber temperature can be an effective 
means of influencing and controlling the fiber velocity 
and thereby the entire spinning process. Therefore, 
determination of the fiber temperature in the spinning 
process is of great practical importance. 

The spinning solution is a ternary system, com- 
posed of cellulose, solvent and nonsolvent; the latter 
is usually water. Solidification of the fiber is brought 
about by diffusional exchange of solvent and non- 
solvent in the coagulation bath. A brief description of 
the mechanics of the process has recently been given 
in ref. [I]. 

In this paper we examine the fiber temperature in 
the air-gap. The fiber temperature in the coagulation 
bath is not considered here, because this leads to a 
classic problem in heat conduction and its well known 
solution [2]. 

The fiber quality as well as the production rate 
are of prime importance to the manufacturer. The 
fiber quality is, of course, affected by the material 
itself, i.e. the molecular mass, composition and chemi- 
cal structure of the cellulose and of the solvent. It also 
depends on the rate of solidification in the bath, and is 
thus influenced by bath temperature and composition. 
The quality is mainly influenced, however, by the rate 
of fiber stretching. Stretching aligns the molecules and 
thus leads to a high degree of orientation of the molec- 
ular chains. The orientation of the molecules, in turn, 
determines the strength and the mechanical properties 
of the fiber. It is therefore desirable, to produce fibers 
with an even and uniform stretch rate along the spin- 

ning line. The rate of stretching also affects the rate 
of fiber production and hence the efficiency of a given 
process. 

Much research has been devoted to the deter- 
mination of the temperature profile of melt spun 
fibers. Bourne and Dixon [3], for example, used an 
integral method to solve the equations that govern 
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TPresent address: Stiftstr. 46,45470 Miilheim/Ruhr, FRG. FIG. 1. Sketch of the spinning process. 

-“P 

1133 





The temperature of fibers during air-gap wet-spinning 1135 

moving fiber is steady and axisymmetric. Although 

the Reynolds number is large enough to justify the 
usual boundary layer assumptions, it is assumed to be 

small enough for the flow to be laminar. All physical 
properties are taken to be constant. 

Air-gap wet-spinning is usually carried out under 
moderate ambient temperatures and pressures. There- 
fore, the solvent does not vaporize and the sur- 
rounding air is insoluble in the fiber. The fiber is, then, 
a ternary system composed of cellulose, solvent and 
water, while its environment is a binary mixture of 

water-vapour and air. It is further assumed that the 
condition of thermodynamic equilibrium at the phase 
boundary is unaffected by the presence of cellulose, 
which merely acts as an inert matrix. 

Two additional simplifications are possible when 
modeling the air-gap wet-spinning process. First, 
because the change of concentration within the fiber 
and the change of the mass flux of the fiber due to 
evaporation are small, we will neglect them. Second, 

because the change of temperature over the cross- 
section of the fiber is small, we will assume that the 
fiber temperature varies only with distance from the 
spinneret. The estimates which lead to these sim- 
plifications, as well as the conditions which must be 
met if they are to be valid, are given in Section 2. 

Despite all of these simplifications, the equations 
that govern the convective heat and mass transfer 
in the fiber and its surroundings have to be solved 
numerically. These equations, along with the relevant 
initial and boundary conditions, are provided in Sec- 
tion 3. Section 4 is devoted to the determination of 
the concentration of water-vapour at the fiber surface 
as imposed by thermodynamic equilibrium, and, in 
Section 5, a brief account is given of the numerical 
solution procedure. The computed temperature pro- 
files are compared to experimental data in Section 
6. The agreement is rather good and supports the 
proposed model. Our conclusions are presented in 
Section 7. 

2. ESTIMATES AND SIMPLIFICATIONS 

Before we establish the conditions that must be 
satisfied for the assumptions of constant con- 
centration within the fiber and constant temperature 
over the cross-section of the fiber to be admissible, we 
introduce the measures of concentration that will be 
used and the necessary notation. For the time being, 
we restrict our analysis to a fiber of constant radius a 
which is drawn with constant speed U through an 
environment that is otherwise at rest. We later com- 
ment on the case of variable fiber velocity. 

In the fiber, the cellulose acts as a matrix that is 
neither involved in the diffusion process nor does it 
influence thermodynamic equilibrium. Therefore, a 
suitable measure of concentration within the fiber 
must ignore the presence of cellulose [6], and the com- 
position of the fiber may be specified through the mass 
fractions EI~ and t-v: with w,‘+ X-J: = 1. Likewise, the 

composition of the environment of the fiber is speci- 
fied through the mass fractions wp and w,” with 

~~+u~~ = I. Here, superscripts V and L are used to 
distinguish quantities in the vapour and the liquid 
state, and indices n, s and a refer to nonsolvent (i.e. 
water), solvent and air, respectively. 

The initial values of fiber temperature and of mass 
fraction of water-vapour at the fiber surface are 
denoted by T, and wIO, respectively, and the cor- 
responding values at large distances from the fiber are 
given by T, and wy,. The concentration of water- 
vapour WI,+ at the fiber surface is related to the water 
content within the fiber E&, to the ambient pressure 
pO, and to the temperature T, at Y = a by the condition 
for thermodynamic equilibrium : 

” 
W”W = fn(n&,p,, r,) at r = a. (1) 

The precise functional form for equilibrium will be 

given in Section 4. 
Following Kuiken [7], we base the estimates for the 

radial change of concentration w and temperature T 
on the conditions of continuity of mass flux m, of 
species i and of heat flux q through the fiber surface : 

and 

(mf-en) = (my-n) at Y = a, (2) 

(qk*n) = (qY*n)+p”(u”*n)(hT-h,L) at r = 0, 

(3) 

where n is the unit normal directed from the fiber to 
the ambient air, qf = -IVT is the heat flux due to 
conduction, I. is the thermal conductivity, p is the 
mass density, u is the velocity of a material particle, 
and (hy --hi) is the heat necessary for evaporation. 

The mass flux of species i, 

m, = w,pu-@VW,, (4) 

is the sum of convectional and diffusional mass fluxes, 
and D is the binary diffusion coefficient. Because the 
air is insoluble in the fiber and solvent does not vapor- 
ize, the corresponding mass fluxes vanish at the sur- 
face and we obtain 

(m,“*n)=O and (mk*n)=O at r=a. (5) 

The only species that is transferred across the phase 
boundary at r = a is water, either in the liquid or the 
vapour state. Therefore, 

#(den) = (m,“*n) and p”(u”*n) = (my*n) 

at r = a. (6) 

Using equations (4) and (6) we obtain the mass 
fluxes as 

p”(u”*n) = - g-(Vwy en) at r = a, (7) 
“W 

and 
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pL(uL-n) = - ips(Vw:-n) at r = a. (8) 
nw 

The overall mass balance is obtained by summing 
(2) over all components i, which yields 

p”(u”*n) = pL(u*n) at r = a. 

Upon inserting (7) and (8) in (9) we get 

Now estimates are needed of the magnitude of the 

gradients of M,: and M!: appearing in equation (IO). A 
concentration boundary layer will develop in the fiber 
and its surroundings. The thickness of this layer is of 
order 6,,(x) - J(Dx/u). Because J(D’-L/(Uu’)) << 1 
in the wet-spinning process, the thickness of the 
boundary layer within the fiber is small compared to 
the radius of the fiber over the entire length of the air- 
gap. Consequently, the concentration at the fiber core 
will remain at the value r+$ with which the fiber left 
the spinneret. Equation (10) then yields the estimate 

Because the term on the right hand side of (11) is 
small compared to one for typical spinning conditions, 
we may set wk N wk,,. In other words : if 

P” D” 1-d 

m 
L<< 1, 

P DL 1 -w& (12) 

it is admissible to neglect the change of concentration 
within the fiber in the air-gap. 

Now we consider the continuity of the heat flux at 
the fiber surface, equation (3) and its relation to the 
radial change of temperature. Similar to the con- 
centration boundary layer, a temperature boundary 
layer will be established in the fiber and its environ- 
ment. The thickness of this layer is of order 6,(x) - 
,,‘(K.Y/CI), where K = p/(k,,) is the thermal diffusivity 
and cP is the specific heat at constant pressure. How- 
ever, because ,/(K’L/( CIu’)) > 1 in the spinning process, 
the thickness of the temperature boundary layer 

within the fiber will soon be larger than the fiber radius 
a. Therefore, the temperature at the filament core 
will begin to drop to a value T,,, below the extrusion 
temperature T,, at only a small distance behind the 
spinneret. Then, (3) and (7) provide the estimate 

+ 
pyDv (hi -h,L) wLw - w;~ 

-- 
/IL (T,-TT,) I-w& (13) 

Because both terms on the right hand side of (13) 

Nonsolvent (n) 

Air (a) 

Cellulose ?I_$ 
FIG. 2. Coordinate system and composition of the fiber. 

are of equal magnitude and small compared to one 
for typical spinning conditions, we may set T,,, N T,. 

If, therefore, 

and 

Uu* p”D” (h;-h,L) w;~-w:, J( > aq 7 (Tw _ TX) F-w,“,‘- << ‘2 (14) 

it is admissible to neglect the change of temperature 
over the cross-section of the fiber. 

3. BALANCE LAWS 

We write the equations that govern 
heat and mass transfer and the initial 

the convective 
and boundary 

conditions that supplement them with respect to the 
polar coordinate system shown in Fig. 2. The axial 

and radial velocity components are denoted by u and 
v, respectively. Applying the usual boundary layer 
approximations (see, e.g., [S]), the equations ofmotion 
and the equations for heat and mass transfer in the 
environment of the fiber are 

2 
x(ru)+ $@I = 0, (15) 

(16) 

(17) 

and 

(18) 

The mass of species and the overall mass of the fiber 
are conserved on account of the approximation 
w,” N const. 

An integral energy balance for the fiber gives 
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pLi7a2nc,L$$ = -2m(q:*n), (19) 

where we have neglected axial heat conduction, r, 
denotes the fiber temperature, and (q,-en) is the heat 

flux through the fiber surface. By use of (3) and (7) 
this heat flux may be written as 

at r = a. (20) 

Inserting this expression into (19) leads to 

pvDv 
+27 ___ aw,v(a) (h,” -h,L). (21) 

I+.(~) ar 

The equations (15)-( 18) and (2 1) are supplemented 
by the initial and boundary conditions 

u=u, a=o, T = TF = T,,, WX = fn(&,p,, To) 

at x = 0, r = a, (22) 

u = 0. T = T,,, IV,” = WI,, at x = 0, r > a, 

(23) 

I.4 = u, c’ = 0, T= TF, 4 = fn(&,,p,, TF), 

at x 2 0, r = a, (24) 

and 

u = 0, T = T,, ~‘1 = WI, at x > 0, r + co. 

(25) 

Note that equations (17) (18) and (21) for species 
and energy conservation are nonlinearly coupled 
through the boundary conditions (22) and (24), and 
through the gradients of T and w,” that appear in 

(21). 
According to the energy balance for the fiber, equa- 

tion (21) the fiber temperature will change in response 
to a conductive heat transfer or a convective enthalpy 
transport through the fiber surface. Depending on the 
values of To, T,, w,& and wi,, the sign of the con- 
ductive heat flux qy * n = IVaT/& and of the con- 
vective enthalpy transport 

p”(u*n)(h~ -h,L) = 

may be either negative or positive and thus lead to 
either cooling or heating of the fiber. In most practical 
applications, T,, will be greater than T,, and WY,, will 
be greater than wl. Consequently, the driving tem- 
perature and concentration differences ( Tb- - TX) and 

(WX -wL,) will be greater than zero. In this case, 
both terms on the right hand side of (21) will have the 
same sign and both will contribute to the cooling of 
the fiber. 

However, with increasing distance from the spin- 

neret, the fiber temperature will decrease. With 

decreasing temperature, the value of wl will also 
decrease. Eventually, wx will be less than WI,,, and 
the mass flux of water-vapour will be directed from 
the environment to the fiber and water-vapour will 
condense at the fiber surface. As a result of this con- 
densation, heat will be released and transferred to the 
fiber. In this case, the terms on the right hand side of 
(21) will have opposite signs : the first term will lead 
to cooling of the fiber due to heat conduction, and the 
second term will lead to heating of the fiber due to 

condensation of water-vapour at the fiber surface. 
The temperature of the fiber ceases to change when 

the heat which is supplied by condensation equals the 
heat which is withdrawn by conduction and convec- 
tion. Because heat is transferred to the fiber by con- 

densation, the ultimate fiber temperature will be 
higher than the ambient temperature. 

4. THERMODYNAMIC EQUILIBRIUM 

As mentioned earlier, the concentration of water- 
vapour at the fiber surface is imposed by the condition 
of thermodynamic equilibrium. This condition pro- 

vides a relation between pressure p, temperature T 
and concentrations WV and wk at the phase boundary. 
The concentrations are usually expressed in terms of 
mole fractions yi, which are related to mass fractions 

w, by 

yi = gw,. 
Here M, is the molecular weight of the ith component 
and M = zy,M, = l/(c w,/M,) is the mean molec- 
ular weight of the mixture. 

According to Gibbs’ phase rule, a two-phase ter- 
nary system possesses three degrees of freedom. In the 
present context, these are given by the pressure pO, 
temperature T,. and concentration of water yk in the 
fiber. Following boundary layer theory, the pressure 
is constant over the boundary layer and is equal to 
the ambient pressure pO; the initial values of tem- 
perature and concentration within the fiber are given 
at the exit of the spinneret. and their evolution in the 

air-gap is determined by the balance laws given in the 
last section. Therefore, the unknown quantities are 

ydv, ~a”, yi’, Y: and YI. 
As was pointed out in the introduction, the air is 

insoluble in the fiber (y,” = 0), and the solvent does 
not vaporize (yp = 0) at low temperatures and pres- 
sures. The remaining quantities are then determined 
by the two compatibility conditions 

yJv = 1-y: and yk = 1 -JJ~, (27) 

and a thermodynamic equilibrium condition which 
relates yx to yb, ,a0 and TF. Following [9], this relation 
may be put in the form 

YP = Y”(Y,L)Y%/PO, (28) 
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FIG. 3. Measured saturation pressures for a mixture of sol- 
vent and nonsolvent at various nonsolvent concentrations. 

where y”(y,‘) is the activity coefficient and pn is the 
saturation pressure of the pure component n. We take 
~7, to be given by the Clausius-Clapeyron equation, 

j&=p,exp(@$$)(l-:)). (29) 

In this expression, pr and r, denote quantities at a 
reference state and Ry is the gas constant of the com- 
ponent n. 

The activity coefficient is unknown, and the remain- 
der of this section is devoted to its determination. To 
this end, we first determine yn for various values of 
water concentration w,” ; we then seek an analytic 
expression to interpolate these data. 

By virtue of Dalton’s law the mole fraction at satu- 
ration is given by the ratio of partial to total pressure, 

vK = P”(T>J%/P”. 

From equations (28) and (30) we obtain 

(30) 

(31) 

The data for the saturation pressurep, as a function 
of temperature and concentration were supplied by 
the manufacturer of the fibers and are shown in Fig. 
3. These data, together with equation (31), determine 
the experimental values of Y,,( yk), which are shown in 
Fig. 4. 

A wealth of analytic expressions has been suggested 

I 
I I I 

19 O,B 0.6 092 0,O 

FIG. 4. Measured values (symbols) and analytic function for 
the activity coefficient. 

in the literature (e.g. [9, lo]) to estimate activity 
coefficients. These expressions are based on excess 
functions and offer a thermodynamically consistent 
method to interpolate and extrapolate thermo- 
dynamic data. Here, we adopt the simplest expression 
for unsymmetric binary mixtures [9] : 

lny, = 4A(1 -JJ:,*y;. (32) 

The constant A is chosen such that equation (32) 
interpolates the data for 7” well; this yields 
A = -3.56. The corresponding curve is shown in 

Fig. 4. 
In Section 6, computed temperature profiles are 

compared with experimental data. Unfortunately, 

however, the experimental data for the fiber tem- 
perature were obtained by spinning a solution with 
concentration yk = 0.464. Therefore, equation (32) 
has to be used to extrapolate the corresponding value 
of y” and we obtain ~“(0.464) = 0. I5 (see Fig. 4). 

For further convenience, we rewrite equation (28) 

with the aid of (26) and (29) to obtain 

where 

is the initial concentration at temperature T,,. 

5. NUMERICAL SOLUTION 

The system of equations (15))( 18) and (21) 
describes the evolution of five unknown quantities : u, 
D, T, T, and WY. The number of unknowns may be 
reduced to four by introducing a streamfunction $ 
such that a$/& = ur and a$/ax = - vr. Equation (15) 
is then satisfied identically. A further reduction of 
the number of unknowns can be accomplished by 
exploiting the condition T = TF at r = u, and regard- 
ing the energy balance for the fiber, equation (21), as 
an additional boundary condition for the temperature 
field in the air-gap. In other words : tj, T and WY are 
taken to be the three primary unknowns, and after 

their determination the fiber temperature Tb is 
obtained upon evaluating Tat r = u. 

The numerical solution of the equations is carried 
out by using dimensionless quantities. Following 
Crane [l 11, we introduce the variables 

x= 

and f’(X, Y) = i-$. (35) 

We further define 



The temperature of fibers during air-gap wet-spinning 1139 

T- T, v ” 

@c----- W” -w,, 
To-T, 

and C = v v > (36) 
w,o-w,, 

and cast equations (15) to (18) into the forms 

&((l+YX)$+ -.$& 

+* af ( a2f a'f af ____- 
araxar > ay* ax ’ (37) 

+prx (38) 

and 

;((l+YX)?$) = -s,gj 

( af ac af ac 
fSCX ~ygy~~ . 

> 
(39) 

The initial conditions (22) and (23) transform to 

,f=O, $1, @=I, C=l 

at X = 0, Y = 0, (40) 

and 

Fy=O, O=O, C=O at X=O,Y+co. (41) 

The boundary conditions (21), (24) and (25) 
become 

(42) 

d@ B, a@ _=_ -+ 
( 

PrB, 8C 

dX Pr aY > Sc(B,-C) aY ’ (43) 

and 

C=F(O)+B,(F(O)-1) at X>O,Y=O, (44) 

and 

$=O_ O=O, C=O at X>O,Y+co, (45) 

where the function F(0) is given by 

F(0) =exp(w(l-$)) 

= exp r:@)j,l)), 
The dimensionless parameters are 

(47) 

B _ (PC,)” (h,V -Q-l 
’ (pcJL B2 = c;(T,- T”,)’ (48) 

1-w:, V 

B,= V v , B,= VWnX;V , (49) 
w,o-w,, W”O - W”, 

7,v 

B5 = To-p= 
fl and B,=o. (50) 

n 0 

The concentration of water-vapour at large dis- 
tances is usually specified by prescribing the relative 
humidity cp” = P./J?“. This leads to 

V M: d,(Tco) 
W”, = (Pnx- -. M” PO 

(51) 

The momentum equation (37) is decoupled from 
the equations (38) and (39) and can be solved inde- 
pendently. Oncef(X, Y) is known, the equations (38) 
and (39) can be solved for 0(X, Y) and C(X, Y). 

We note that X and Y are suitable measures of 
nondimensional distance for the temperature and con- 
centration fields only if the Prandtl and Schmidt num- 
bers are of order unity. If, for example, Pr >> 1, better 
suited variables for the solution of (38) are < = X/ JPr 

and vl= Y JPr. 

The numerical scheme which has been chosen to 
solve the equations is due to Herring and Mellor [ 121. 
The method consists of essentially two steps. In the 
first step, the equations are discretized in the X-direc- 
tion according to the Crank-Nicholson scheme. In 
the second step, the resulting ordinary differential 

equations are solved with a Runge-Kutta method at 
a fixed value of X. The initial, similarity-type profiles 
are naturally obtained as solutions to the equations 

(37) to (39) upon setting Xequal to zero. 
The coupling between the equations (38) and (39) 

through the conditions (43) and (44) necessitates an 
iterative solution procedure. In an inner loop, we 
determine the temperature profile and solve equation 
(38) subject to the boundary conditions (43) and (45b) 
with prescribed values for C and aC/aY at Y = 0. In 
the outer loop, we determine the concentration profile 
and solve equation (39) with the boundary conditions 
(44) and (45~). This procedure is easily implemented 
and takes approximately nine iterations at each X- 
position to yield an upper relative error of 10mh for 
the values and gradients of temperature and con- 

centration at the fiber surface. 
If we allow the fiber velocity to vary with distance 

from the spinneret, the equations (35), (36) and (38)- 
(46) remain unchanged, provided that Ua* = const. 
The changing fiber velocity makes itself felt only 
through the term -2X (da/dX) (af/aY)‘, which has 
to be added to the right hand side of (37). Miinzing 
[5] has investigated the case of a fiber velocity varying 
linearly with x. He found that for typical spinning 
conditions the friction coefficient of a stretching fiber 
differs by at most 8% from the corresponding value 
obtained for constant U, while the fiber temperature 
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Table 1. Dimensionless parameters for temperature profiles; cases (i)-(v) 

Pi- 
SC 

B, 
B2 
B, 
B4 
B5 
B6 

ii 111 iv 

0.7 0.7 0.7 0.7 0.7 
0.61 0.61 0.61 0.61 0.61 
4.196E-04 4.196E-04 4.196E-04 4.196E-04 4.196E-04 

30.77 41.96 24.29 24.29 41.96 
31.35 115.5 13.40 24.94 121.4 
0.369 1.360 0.157 0.080 4.43 1 
3.973 5.418 3.137 2.926 5.782 

13.41 14.17 12.37 13.41 13.41 

is virtually unaffected. Therefore, we restrict our 
analysis to the case U = const. 

6. RESULTS AND DISCUSSION 

We now compare the model predictions to exper- 
imental data. The data for the fiber temperature were 
obtained in four different experimental set-ups, 
denoted by 1.1 to 1.4. Unfortunately, neither the tem- 
perature T, nor the concentration MI:, were measured 
at large distances from the fiber. Because the exper- 
iments were carried out under ordinary laboratory 
conditions, we assume that T, = 25’ C, and that the 
relative humidity was given by v,,~ = 0.6 in all set- 
ups. 

The experimental set-ups differ in initial tem- 

perature T, and volume flow rate v = nUu2, all other 
parameters are the same. The difference in initial tem- 
perature is so slight (less than 4% at most) that 
we have used a mean value for comparison with the 
numerical computation. Note that the difference in 
volume flow rate merely shifts the experimental data 
along the dimensionless X-axis. 

All physical properties were assigned values at a 
temperature T = (To+ T,)/2. The resulting com- 
bination of dimensionless parameters is denoted as 
case (i) and the values of Pr, SC and B, to B6 are 
collected in Table 1. The ratios of the volume flow 
rates in the experimental set-ups are given in Table 2. 
Details of the calculation procedure may be found in 
ref. [13]. 

The experimental data and computed temperature 
profiles with and without mass transfer are shown in 
Fig. 5. The agreement between the calculated profile 
which accounts for mass transfer and the measure- 
ments is fairly good and supports the proposed model. 
The vertical chain-dotted line in Fig. 5 indicates the 
distance from the spinneret at which the mass flux of 
water-vapour is reversed. For smaller distances water 
evaporates, and for larger distances water-vapour 
condenses at the fiber surface. 

The temperature profile is governed by the dimen- 

sionless parameters Pr, SC and B, to B,. It would, of 
course, be possible to study the influence of these 
parameters by varying only one of them while keeping 
the others fixed. It is not obvious, however, how this 
variation could be achieved in practice. The only 

Table 2. Ratios of volume flow rates 

I. I 1.2 I.3 I.4 

rii r’,. I 1.000 0.206 2.794 0.353 

quantities that can be changed and controlled easily 
under industrial conditions are the initial and the 
ambient temperature. Due to their physical sig- 
nificance, these quantities appear in five dimensionless 
products, either directly, as in Bz, B, and Bb; or 
indirectly, as in B, and B4 through LV$ and WY,,, which 
are related to 7’” and T,, through equations of state. 
Here, we choose to study the influence of the initial 
and the ambient temperature by assigning a few typi- 

cal values for T, and T, and express the values of 
the parameters in form of the dimensionless groups 

B, to Be. 
We study five cases, denoted by (i)-(v). Case (i) 

is given by the experimental conditions as explained 
above. In cases (ii) and (iii) we vary To, while in 
cases (iv) and (v) we vary T,. In case (ii), the initial 
temperature T,, was chosen to be 20 K lower than in 
case (i), in case (iii) the temperature Tn was chosen to 
be 20 K higher than in case (i). 

In case (iv), the initial temperature was the same as 
in case (i) and the temperature T, was chosen to be 
20 K lower than in case (i), whereas in case (v) the 
temperature T,, was chosen to be 20 K higher than in 
case (i). The relevant parameters are tabulated in 
Table I. 

The temperature profiles for the cases (ii)-(v) are 
plotted in Figs. 6 and 7. The results can be explained 
by noting that an increase in initial temperature gives 
rise to an increase of the concentration of water- 
vapour at the fiber surface. Accordingly, the mass flux 
of water-vapour and the cooling-rate are larger and 
the fiber temperature falls off more quickly. Also, the 
distance over which water evaporates is longer and 
the final fiber temperature is lower relative to a case 
with low initial temperature. 

Raising the temperature in the environment leads 
to a higher concentration wl, at infinity. The mass 
flux of water-vapour then diminishes and the location 
where condensation first occurs moves closer to the 
spinneret. Also, the final fiber temperature is lower, 
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FIG. 5. Measured (symbols) and calculated (solid lines) fiber 
temperature with and without mass transfer; case (i). The 
vertical chain-dotted line denotes the distance at which the 
mass-flux of water-vapour is reversed. For smaller distances, 
water evaporates (denoted by evap), for larger distances 
water-vapour condenses on the fiber (denoted by condens). 

because both driving differences (TO- T,) and 

(4l- WL) are smaller. 
If the ambient temperature is high enough or if the 

initial temperature is low enough, the concentrations 
of water-vapour at the fiber surface and at large dis- 
tances may be such that water-vapour begins to con- 
dense right at the spinneret. 

7. CONCLUSIONS 

A model has been presented for coupled heat and 
mass transfer that is applicable to fiber cooling in the 
air-gap wet-spinning process. It is shown that cooling 
in this process is markedly influenced by evaporation 
of the water which is contained within the fiber. The 
model predictions agree well with experiments and it 
is found that, in general, the water evaporates close to 
the spinneret, while for larger distances water-vapour 
condenses at the fiber surface. The ultimate fiber tem- 
perature is determined by a balance between cooling 
by convection and heating by condensation. 

It is important to control the cooling of the fiber 

I I I I 

0 1 2 3 4 

~8r+‘(W) 10-Z 

FIG. 6. Calculated temperature profiles for different initial 
temperatures TU ; cases (i)-(iii). In case (ii) To,,, = To,, - 20 K. 

In case (iii) T, ,,,, = To,, + 20 K. 

FIG. 7. Calculated temperature profiles for different ambient 
temperatures T, ; cases (i), (iv) and (v). In case (iv), 

T ?_,I” = T,,,-20 K. Incase (v), T,,, = TX,,+20 K. 
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and the length along which water evaporates in the 
spinning process. This may be done by changing, for 
example, the temperature with which the fiber leaves 
the spinneret or the conditions in the ambient air. 

Neither change is unrestricted, however, since for 
large initial temperatures the spinning solution 
degrades, and complete control of the environment 
necessitates expensive air conditioning. 

Excessive condensation of water-vapour at the fiber 
surface may have a negative impact on the spinning 
process, because the composition of the fiber changes 
due to evaporation and condensation. Even though it 
has been shown that the effect of changing con- 
centration within the fiber on the fiber temperature is 
negligible, the effect on the mechanical properties of 
the fiber may be appreciable, because the spinning 
solution solidifies instantaneously when the solvent 
concentration falls below a critical value. It is there- 
fore conceivable that as a result of condensation in 
the air-gap a thin solid crust is formed at the periphery 
of the fiber. This crust may be torn apart when the 
fiber enters the coagulation bath and this may be 
detrimental to the spinning process and hence to the 
features of the final product. 
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